《TensorFlow机器学习项目实战》[阿根迁]鲁道夫.保林【文字版_PDF电子书_推荐】_计算机类 (tensorflow安装)
《TensorFlow机器学习项目实战》[阿根迁]鲁道夫.保林【文字版_PDF电子书_推荐】
书名:TensorFlow机器学习项目实战 作者:【阿根廷】RodolfoBonnin 出版社:人民邮电出版社 译者:姚鹏鹏 出版日期:2017-11 页数:/ ISBN:9787115463623 |
6.1 豆瓣短评 |
全网资源sm.nayona.cn |
内容简介:
TensorFlow是Google所主导的机器学习框架,也是机器学习领域研究和应用的热门对象。 《TensorFlow机器学习项目实战》主要介绍如何使用TensorFlow库实现各种各样的模型,旨在降低学习门槛,并为读者解决问题提供详细的方法和指导。《TensorFlow机器学习项目实战》全书共10章,分别介绍了TensorFlow基础知识、聚类、线性回归、逻辑回归、不同的神经网络、规模化运行模型以及库的应用技巧。 《TensorFlow机器学习项目实战》适合想要学习和了解 TensorFlow 和机器学习的读者阅读参考。如果读者具备一定的C 和Python的经验,将能够更加轻松地阅读和学习本书。
作者简介:
Rodolfo Bonnin是一名系统工程师,同时也是阿根廷国立理工大学的博士生。他还在德国斯图加特大学进修过并行编程和图像理解的研究生课程。 他从2005年开始研究高性能计算,并在2008年开始研究和实现卷积神经网络,编写过一个同时支持CPU和GPU的神经网络前馈部分。最近,他一直在进行使用神经网络进行欺诈模式检测的工作,目前正在使用ML技术进行信号分类。
目 录:
第1章 探索和转换数据 1
1.1 TensorFlow的主要数据结构—张量 1
1.1.1 张量的属性—阶、形状和类型 1
1.1.2 创建新的张量 3
1.1.3 动手工作—与TensorFlow交互 4
1.2 处理计算工作流—TensorFlow的数据流图 5
1.2.1 建立计算图 5
1.2.2 数据供给 6
1.2.3 变量 6
1.2.4 保存数据流图 6
1.3 运行我们的程序—会话 8
1.4 基本张量方法 8
1.4.1 简单矩阵运算 8
1.4.2 序列 11
1.4.3 张量形状变换 12
1.4.4 数据流结构和结果可视化—TensorBoard 14
1.5 从磁盘读取信息 18
1.5.1 列表格式—CSV 18
1.5.2 读取图像数据 19
1.5.3 加载和处理图像 20
1.5.4 读取标准TensorFlow格式 21
1.6 小结 21
第2章 聚类 22
2.1 从数据中学习—无监督学习 22
2.2 聚类的概念 22
2.3 k均值 23
2.3.1 k均值的机制 23
2.3.2 算法迭代判据 23
2.3.3 k均值算法拆解 24
2.3.4 k均值的优缺点 25
2.4 k最近邻 25
2.4.1 k最近邻算法的机制 26
2.4.2 k-nn的优点和缺点 26
2.5 有用的库和使用示例 27
2.5.1 matplotlib绘图库 27
2.5.2 scikit-learn数据集模块 28
2.5.3 人工数据集类型 28
2.6 例1—对人工数据集的k均值
聚类 29
2.6.1 数据集描述和加载 29
2.6.2 模型架构 30
2.6.3 损失函数描述和优化循环 31
2.6.4 停止条件 31
2.6.5 结果描述 31
2.6.6 每次迭代中的质心变化 32
2.6.7 完整源代码 32
2.6.8 k均值用于环状数据集 34
2.7 例2—对人工数据集使用最近邻算法 36
2.7.1 数据集生成 36
2.7.2 模型结构 36
2.7.3 损失函数描述 37
2.7.4 停止条件 37
2.7.5 结果描述 37
2.7.6 完整源代码 37
2.8 小结 39
第3章 线性回归 40
3.1 单变量线性模型方程 40
3.2 选择损失函数 41
3.3 最小化损失函数 42
3.3.1 最小方差的全局最小值 42
3.3.2 迭代方法:梯度下降 42
3.4 示例部分 43
3.4.1 TensorFlow中的优化方法—训练模块 43
3.4.2 tf.train.Optimizer类 43
3.4.3 其他Optimizer实例类型 44
3.5 例1—单变量线性回归 44
3.5.1 数据集描述 45
3.5.2 模型结构 45
3.5.3 损失函数描述和Optimizer 46
3.5.4 停止条件 48
3.5.5 结果描述 48
3.5.6 完整源代码 49
3.6 例2—多变量线性回归 51
3.6.1 有用的库和方法 51
3.6.2 Pandas库 51
3.6.3 数据集描述 51
3.6.4 模型结构 53
3.6.5 损失函数和Optimizer 54
3.6.6 停止条件 55
3.6.7 结果描述 55
3.6.8 完整源代码 56
3.7 小结 57
第4章 逻辑回归 58
4.1 问题描述 58
4.2 Logistic函数的逆函数—Logit函数 59
4.2.1 伯努利分布 59
4.2.2 联系函数 60
4.2.3 Logit函数 60
4.2.4 对数几率函数的逆函数—Logistic函数 60
4.2.5 多类分类应用—Softmax回归 62
4.3 例1—单变量逻辑回归 64
4.3.1 有用的库和方法 64
4.3.2 数据集描述和加载 65
4.3.3 模型结构 67
4.3.4 损失函数描述和优化器循环 67
4.3.5 停止条件 68
4.3.6 结果描述 68
4.3.7 完整源代码 69
4.3.8 图像化表示 71
4.4 例2—基于skflow单变量逻辑回归 72
4.4.1 有用的库和方法 72
4.4.2 数据集描述 72
4.4.3 模型结构 72
4.4.4 结果描述 73
4.4.5 完整源代码 74
4.5 小结 74
第5章 简单的前向神经网络 75
5.1 基本概念 75
5.1.1 人工神经元 75
5.1.2 神经网络层 76
5.1.3 有用的库和方法 78
5.2 例1—非线性模拟数据回归 79
5.2.1 数据集描述和加载 79
5.2.2 数据集预处理 80
5.2.3 模型结构—损失函数描述 80
5.2.4 损失函数优化器 80
5.2.5 准确度和收敛测试 80
5.2.6 完整源代码 80
5.2.7 结果描述 81
5.3 例2—通过非线性回归,对汽车燃料效率建模 82
5.3.1 数据集描述和加载 82
5.3.2 数据预处理 83
5.3.3 模型架构 83
5.3.4 准确度测试 84
5.3.5 结果描述 84
5.3.6 完整源代码 84
5.4 例3—多类分类:葡萄酒分类 86
5.4.1 数据集描述和加载 86
5.4.2 数据集预处理 86
5.4.3 模型架构 87
5.4.4 损失函数描述 87
5.4.5 损失函数优化器 87
5.4.6 收敛性测试 88
5.4.7 结果描述 88
5.4.8 完整源代码 88
5.5 小结 89
第6章 卷积神经网络 90
6.1 卷积神经网络的起源 90
6.1.1 卷积初探 90
6.1.2 降采样操作—池化 95
6.1.3 提高效率—dropout操作 98
6.1.4 卷积类型层构建办法 99
6.2 例1—MNIST数字分类 100
6.2.1 数据集描述和加载 100
6.2.2 数据预处理 102
6.2.3 模型结构 102
6.2.4 损失函数描述 103
6.2.5 损失函数优化器 103
6.2.6 准确性测试 103
6.2.7 结果描述 103
6.2.8 完整源代码 104
6.3 例2—CIFAR10数据集的图像分类 106
6.3.1 数据集描述和加载 107
6.3.2 数据集预处理 107
6.3.3 模型结构 108
6.3.4 损失函数描述和优化器 108
6.3.5 训练和准确性测试 108
6.3.6 结果描述 108
6.3.7 完整源代码 109
6.4 小结 110
第7章 循环神经网络和LSTM 111
7.1 循环神经网络 111
7.1.1 梯度爆炸和梯度消失 112
7.1.2 LSTM神经网络 112
7.1.3 其他RNN结构 116
7.1.4 TensorFlow LSTM有用的类和方法 116
7.2 例1—能量消耗、单变量时间序列数据预测 117
7.2.1 数据集描述和加载 117
7.2.2 数据预处理 118
7.2.3 模型结构 119
7.2.4 损失函数描述 121
7.2.5 收敛检测 121
7.2.6 结果描述 122
7.2.7 完整源代码 122
7.3 例2—创作巴赫风格的曲目 125
7.3.1 字符级模型 125
7.3.2 字符串序列和概率表示 126
7.3.3 使用字符对音乐编码—ABC音乐格式 126
7.3.4 有用的库和方法 128
7.3.5 数据集描述和加载 129
7.3.6 网络训练 129
7.3.7 数据集预处理 130
7.3.8 损失函数描述 131
7.3.9 停止条件 131
7.3.10 结果描述 131
7.3.11 完整源代码 132
7.4 小结 137
第8章 深度神经网络 138
8.1 深度神经网络的定义 138
8.2 深度网络结构的历史变迁 138
8.2.1 LeNet 5 138
8.2.2 Alexnet 139
8.2.3 VGG模型 139
8.2.4 第一代Inception模型 140
8.2.5 第二代Inception模型 141
8.2.6 第三代Inception模型 141
8.2.7 残差网络(ResNet) 142
8.2.8 其他的深度神经网络
结构 143
8.3 例子—VGG艺术风格转移 143
8.3.1 有用的库和方法 143
8.3.2 数据集描述和加载 143
8.3.3 数据集预处理 144
8.3.4 模型结构 144
8.3.5 损失函数 144
8.3.6 收敛性测试 145
8.3.7 程序执行 145
8.3.8 完整源代码 146
8.4 小结 153
第9章 规模化运行模型—GPU和
服务 154
9.1 TensorFlow中的GPU支持 154
9.2 打印可用资源和设备参数 155
9.2.1 计算能力查询 155
9.2.2 选择CPU用于计算 156
9.2.3 设备名称 156
9.3 例1—将一个操作指派给
GPU 156
9.4 例2—并行计算Pi的数值 157
9.4.1 实现方法 158
9.4.2 源代码 158
9.5 分布式TensorFlow 159
9.5.1 分布式计算组件 159
9.5.2 创建TensorFlow集群 160
9.5.3 集群操作—发送计算方法
到任务 161
9.5.4 分布式编码结构示例 162
9.6 例3—分布式Pi计算 163
9.6.1 服务器端脚本 163
9.6.2 客户端脚本 164
9.7 例4—在集群上运行分布式
模型 165
9.8 小结 168
第10章 库的安装和其他技巧 169
10.1 Linux安装 169
10.1.1 安装要求 170
10.1.2 Ubuntu安装准备(安装操作的
前期操作) 170
10.1.3 Linux下通过pip安装
TensorFlow 170
10.1.4 Linux下从源码安装
TensorFlow 175
10.2 Windows安装 179
10.2.1 经典的Docker工具箱
方法 180
10.2.2 安装步骤 180
10.3 MacOS X安装 183
10.4 小结 185
浏览器不支持脚本!
有需要联系v;hx-hx4
摘要:《TensorFlow机器学习项目实战》是一本计算机类的文字版PDF电子书,由阿根迁和鲁道夫·保林合着。本书全面介绍了TensorFlow机器学习项目的实战应用,通过详细的阐述和丰富的示例,帮助读者深入理解TensorFlow的应用和实践。本文将从四个方面对《TensorFlow机器学习项目实战》进行阐述。
1、TensorFlow机器学习项目实战的内容简介
《TensorFlow机器学习项目实战》一书主要内容包括TensorFlow的基础知识、机器学习算法、深度学习模型的构建等。通过实际案例的讲解和实践项目的开展,读者能够全面了解TensorFlow在机器学习领域的应用,掌握基本的机器学习算法和深度学习模型构建的技巧。
本书除了理论知识的介绍外,还提供了丰富的实例和代码,读者可以通过实际操作来加深对TensorFlow的理解和掌握。无论是初学者还是有一定经验的开发者,都能够从本书中获得实际应用的经验和技巧。
2、TensorFlow机器学习项目实战的优势
《TensorFlow机器学习项目实战》的一大优势是其实践性和实用性。本书以实际项目为例,通过实际应用场景的讲解和实践项目的开展,帮助读者理解和应用TensorFlow的各种功能和技术。
另外,本书的作者阿根迁和鲁道夫·保林都是在机器学习领域有丰富经验的专家,他们的经验和见解能够为读者提供宝贵的指导和实践建议。无论是在理论还是实践方面,读者都能够从他们的经验中受益。
3、TensorFlow机器学习项目实战的应用领域
《TensorFlow机器学习项目实战》适用于各个领域的读者,包括学生、研究人员和开发者等。无论是在学术研究中还是在实际应用中,TensorFlow机器学习项目都能够发挥重要的作用。
在学术研究方面,本书提供了丰富的理论知识和实例,帮助读者深入理解机器学习和深度学习的原理和方法。在实际应用方面,本书通过实际案例和实践项目的讲解,帮助读者掌握TensorFlow的应用技巧,并能够将其应用到自己的项目中。
4、TensorFlow机器学习项目实战的价值和意义
《TensorFlow机器学习项目实战》的价值和意义在于帮助读者掌握机器学习和深度学习的实际应用技巧,并能够将其应用到自己的项目中。通过实际案例和实践项目的讲解,读者能够深入理解TensorFlow的应用原理和方法,提高自己的实际操作能力。
此外,TensorFlow机器学习项目还具有广泛的应用领域,可以应用于图像识别、自然语言处理、推荐系统等多个领域。本书的内容涵盖了这些应用领域的基本理论和实践技巧,读者可以根据自己的需求选择相应的章节进行学习和实践。
总结:
《TensorFlow机器学习项目实战》是一本计算机类的文字版PDF电子书,由阿根迁和鲁道夫·保林合着。本书通过实际案例和实践项目的讲解,帮助读者全面了解TensorFlow的应用和实践。无论是初学者还是有一定经验的开发者,都能够从本书中获得实际应用的经验和技巧。本文由nayona.cn整理。
本文采摘于网络,不代表本站立场,转载联系作者并注明出处: https://sm.nayona.cn/xinnengyuan/259347.html