《深度学习算法实践(基于Theano和TensorFlow)》闫涛【文字版_PDF电子书_推荐】
书名:深度学习算法实践(基于Theano和TensorFlow) 作者:闫涛/周琦 出版社:电子工业出版社 译者:无 出版日期:2018-4 页数:584 ISBN:9787121337932 |
0.0 豆瓣短评 |
全网资源sm.nayona.cn |
内容简介:
本书以深度学习算法入门为主要内容,通过系统介绍Python、NumPy、SciPy等科学计算库,深度学习主流算法,深度学习前沿研究,深度学习服务云平台构建四大主线,向读者系统地介绍了深度学习的主要内容和研究进展。本书介绍了Python、NumPy、SciPy的使用技巧,面向谷歌推出的开源深度学习框架TensorFlow,向读者展示了利用TensorFlow和Theano框架实现线性回归、逻辑回归、多层感知器、卷积神经网络、递归神经网络、长短时记忆网络、去噪自动编码机、堆叠自动编码机、受限玻尔兹曼机、深度信念网络等,并将这些技术用于MNIST手写数字识别任务。本书不仅讲述了深度学习算法本身,而且重点讲述了如何将这些深度学习算法包装成Web服务。本书旨在帮助广大工程技术人员快速掌握深度学习相关理论和实践,并将这些知识应用到实际工作中。
本书可以作为各类深度学习培训班的教材,也可以作为全国高等工科院校“深度学习”课程的教材,还可以作为广大人工智能、深度学习领域工程技术人员的参考书。
作者简介:
闫涛,网名“最老程序员”。中科院苏州生物医学工程技术研究所副研究员(兼),科技部重点专项:帕金森症早期预防、“十三五”出生缺陷预防系统研究课题组成员,专注于深度学习在医学影像学诊断、医学图像分割、医学图像诊断性标注等应用方向的技术开发。CSDN博客重度使用者,博客地址http://blog.csdn.net/yt7589。北京动维康科技有限公司联合创始人、首席技术官,主持开发了移动医疗系统随诊医生。专注于移动互联网软件开发20年,精通主流开发技术,尤其擅长处理大容量、高并发系统的设计与实现。开源软件倡导者,本书部分代码的GitHub网址为https://github.com/yt7589/dlp/tree/master/book。
目 录:
目 录
第一部分 深度学习算法概述
第1章 深度学习算法简介 2
1.1 神经网络发展简史 2
1.1.1 神经网络第一次兴起 3
1.1.2 神经网络沉寂期(20世纪80年代—21世纪) 4
1.1.3 神经网络技术积累期(20世纪90年代—2006年) 5
1.1.4 深度学习算法崛起(2006年至今) 8
1.2 深度学习现状 10
1.2.1 传统神经网络困境 10
1.2.2 深度多层感知器 12
1.2.3 深度卷积神经网络 14
1.2.4 深度递归神经网络 15
1.3 深度学习研究前瞻 16
1.3.1 自动编码机 17
1.3.2 深度信念网络 18
1.3.3 生成式网络最新进展 19
1.4 深度学习框架比较 20
1.4.1 TensorFlow 20
1.4.2 Theano 21
1.4.3 Torch 22
1.4.4 DeepLearning4J 23
1.4.5 Caffe 23
1.4.6 MXNet 24
1.4.7 CNTK 27
1.4.8 深度学习框架造型指导原则 27
1.5 深度学习入门路径 28
1.5.1 运行MNIST 28
1.5.2 深度学习框架的选择 29
1.5.3 小型试验网络 33
1.5.4 训练生产网络 33
1.5.5 搭建生产环境 34
1.5.6 持续改进 35
第二部分 深度学习算法基础
第2章 搭建深度学习开发环境 38
2.1 安装Python开发环境 38
2.1.1 安装最新版本Python 38
2.1.2 Python虚拟环境配置 39
2.1.3 安装科学计算库 40
2.1.4 安装最新版本Theano 40
2.1.5 图形绘制 40
2.2 NumPy简易教程 43
2.2.1 Python基础 43
2.2.2 多维数组的使用 51
2.2.3 向量运算 58
2.2.4 矩阵运算 60
2.2.5 线性代数 62
2.3 TensorFlow简易教程 68
2.3.1 张量定义 69
2.3.2 变量和placeholder 69
2.3.3 神经元激活函数 71
2.3.4 线性代数运算 72
2.3.5 操作数据集 74
2.4 Theano简易教程 77
2.4.1 安装Theano 77
2.4.2 Theano入门 78
2.4.3 Theano矩阵相加 79
2.4.4 变量和共享变量 80
2.4.5 随机数的使用 84
2.4.6 Theano求导 84
2.5 线性回归 86
2.5.1 问题描述 86
2.5.2 线性模型 88
2.5.3 线性回归学习算法 89
2.5.4 解析法 90
2.5.5 Theano实现 93
第3章 逻辑回归 100
3.1 逻辑回归数学基础 100
3.1.1 逻辑回归算法的直观解释 100
3.1.2 逻辑回归算法数学推导 101
3.1.3 牛顿法解逻辑回归问题 103
3.1.4 通用学习模型 106
3.2 逻辑回归算法简单应用 113
3.3 MNIST手写数字识别库简介 124
3.4 逻辑回归MNIST手写数字识别 126
第4章 感知器模型和MLP 139
4.1 感知器模型 139
4.1.1 神经元模型 139
4.1.2 神经网络架构 143
4.2 数值计算形式 144
4.2.1 前向传播 144
4.2.2 误差反向传播 145
4.2.3 算法推导 147
4.3 向量化表示形式 152
4.4 应用要点 153
4.4.1 输入信号模型 154
4.4.2 权值初始化 155
4.4.3 早期停止 155
4.4.4 输入信号调整 156
4.5 TensorFlow实现MLP 156
第5章 卷积神经网络 174
5.1 卷积神经网络原理 174
5.1.1 卷积神经网络的直观理解 174
5.1.2 卷积神经网络构成 177
5.1.3 卷积神经网络设计 191
5.1.4 迁移学习和网络微调 193
5.2 卷积神经网络的TensorFlow实现 195
5.2.1 模型搭建 197
5.2.2 训练方法 203
5.2.3 运行方法 208
第6章 递归神经网络 212
6.1 递归神经网络原理 212
6.1.1 递归神经网络表示方法 213
6.1.2 数学原理 214
6.1.3 简单递归神经网络应用示例 219
6.2 图像标记 226
6.2.1 建立开发环境 226
6.2.2 图像标记数据集处理 227
6.2.3 单步前向传播 229
6.2.4 单步反向传播 231
6.2.5 完整前向传播 234
6.2.6 完整反向传播 236
6.2.7 单词嵌入前向传播 239
6.2.8 单词嵌入反向传播 241
6.2.9 输出层前向/反向传播 243
6.2.10 输出层代价函数计算 245
6.2.11 图像标注网络整体架构 248
6.2.12 代价函数计算 249
6.2.13 生成图像标记 255
6.2.14 网络训练过程 258
6.2.15 网络持久化 265
第7章 长短时记忆网络 269
7.1 长短时记忆网络原理 269
7.1.1 网络架构 269
7.1.2 数学公式 272
7.2 MNIST手写数字识别 274
第三部分 深度学习算法进阶
第8章 自动编码机 286
8.1 自动编码机概述 286
8.1.1 自动编码机原理 287
8.1.2 去噪自动编码机 287
8.1.3 稀疏自动编码机 288
8.2 去噪自动编码机TensorFlow实现 291
8.3 去噪自动编码机的Theano实现 298
第9章 堆叠自动编码机 307
9.1 堆叠去噪自动编码机 308
9.2 TensorFlow实现 322
9.3 Theano实现 341
第10章 受限玻尔兹曼机 344
10.1 受限玻尔兹曼机原理 344
10.1.1 网络架构 344
10.1.2 能量模型 346
10.1.3 CD-K算法 351
10.2 受限玻尔兹曼机TensorFlow实现 353
10.3 受限玻尔兹曼机Theano实现 362
第11章 深度信念网络 381
11.1 深度信念网络原理 381
11.2 深度信念网络TensorFlow实现 382
11.3 深度信念网络Theano实现 403
第四部分 机器学习基础
第12章 生成式学习 420
12.1 高斯判别分析 422
12.1.1 多变量高斯分布 422
12.1.2 高斯判决分析公式 423
12.2 朴素贝叶斯 436
12.2.1 朴素贝叶斯分类器 436
12.2.2 拉普拉斯平滑 439
12.2.3 多项式事件模型 441
第13章 支撑向量机 444
13.1 支撑向量机概述 444
13.1.1 函数间隔和几何间隔 445
13.1.2 最优距离分类器 448
13.2 拉格朗日对偶 448
13.3 最优分类器算法 450
13.4 核方法 453
13.5 非线性可分问题 455
13.6 SMO算法 457
13.6.1 坐标上升算法 458
13.6.2 SMO算法详解 458
第五部分 深度学习平台API
第14章 Python Web编程 462
14.1 Python Web开发环境搭建 462
14.1.1 CherryPy框架 463
14.1.2 CherryPy安装 463
14.1.3 测试CherryPy安装是否成功 464
14.2 最简Web服务器 465
14.2.1 程序启动 465
14.2.2 显示HTML文件 466
14.2.3 静态内容处理 468
14.3 用户认证系统 471
14.4 AJAX请求详解 473
14.4.1 添加数据 474
14.4.2 修改数据 476
14.4.3 删除数据 478
14.4.4 REST服务实现 479
14.5 数据持久化技术 487
14.5.1 环境搭建 487
14.5.2 数据库添加操作 488
14.5.3 数据库修改操作 489
14.5.4 数据库删除操作 490
14.5.5 数据库查询操作 491
14.5.6 数据库事务操作 492
14.5.7 数据库连接池 494
14.6 任务队列 499
14.7 媒体文件上传 502
14.8 Redis操作 504
14.8.1 Redis安装配置 504
14.8.2 Redis使用例程 505
第15章 深度学习云平台 506
15.1 神经网络持久化 506
15.1.1 数据库表设计 506
15.1.2 整体目录结构 511
15.1.3 训练过程及模型文件保存 512
15.2 神经网络运行模式 528
15.3 AJAX请求调用神经网络 531
15.3.1 显示静态网页 531
15.3.2 上传图片文件 540
15.3.3 AJAX接口 543
15.4 请求合法性验证 545
15.4.1 用户注册和登录 546
15.4.2 客户端生成请求 553
15.4.3 服务器端验证请求 555
15.5 异步结果处理 557
15.5.1 网页异步提交 557
15.5.2 应用队列管理模块 559
15.5.3 任务队列 560
15.5.4 结果队列 561
15.5.5 异步请求处理流程 562
15.6 神经网络持续改进 563
15.6.1 应用遗传算法 563
15.6.2 重新训练 564
15.6.3 生成式对抗网络 565
后 记 567
参考文献 568
浏览器不支持脚本!
有需要联系v;hx-hx4
摘要:《深度学习算法实践(基于Theano和TensorFlow)》是一本计算机类的文字版PDF电子书,由闫涛编写。本书从四个方面详细阐述了深度学习算法的实践,包括深度学习的基本原理、Theano和TensorFlow工具的介绍与应用、深度学习在图像处理和自然语言处理中的应用等。通过本书的学习,读者可以全面了解深度学习算法的基本概念和实践技巧,提高在计算机领域的应用能力。
1、深度学习算法的基本原理
深度学习是一种通过多个神经网络层次组合来实现机器学习的方法。本书首先介绍了深度学习算法的基本原理,包括神经网络的基本结构和训练方法,激活函数的选择等。接着详细介绍了反向传播算法和梯度下降算法等常用的深度学习优化算法。通过对这些基本原理的学习,读者可以对深度学习算法有一个全面的认识。
在实践部分,本书通过实例代码演示了如何使用Python和Theano来实现深度学习的基本原理。通过这些实例,读者可以亲自动手实践,进一步加深对深度学习算法的理解。
2、Theano和TensorFlow工具的介绍与应用
Theano和TensorFlow是两个常用的深度学习工具库,本书详细介绍了它们的基本原理和使用方法。首先介绍了Theano工具的使用,包括Theano的基本数据类型和符号计算的原理。接着介绍了TensorFlow工具的使用,包括TensorFlow的计算图和张量的概念。通过对这两个工具的介绍,读者可以了解它们在深度学习中的应用场景和使用方法。
在应用部分,本书通过实例演示了如何使用Theano和TensorFlow来实现图像分类和自然语言处理等任务。通过这些实例,读者可以学会如何使用这两个工具来解决实际问题,提高在深度学习应用中的能力。
3、深度学习在图像处理中的应用
深度学习在图像处理领域有着广泛的应用,本书详细介绍了深度学习在图像分类、目标检测和图像生成等任务中的应用方法。首先介绍了卷积神经网络和循环神经网络在图像处理中的应用原理和方法。接着通过实例演示了如何使用Theano和TensorFlow来实现图像分类和目标检测等任务。通过这些实例,读者可以了解深度学习在图像处理中的具体应用方法。
4、深度学习在自然语言处理中的应用
深度学习在自然语言处理领域也有着广泛的应用,本书详细介绍了深度学习在文本分类、命名实体识别和机器翻译等任务中的应用方法。首先介绍了循环神经网络和注意力机制在自然语言处理中的应用原理和方法。接着通过实例演示了如何使用Theano和TensorFlow来实现文本分类和机器翻译等任务。通过这些实例,读者可以了解深度学习在自然语言处理中的具体应用方法。
总结:
本书全面介绍了深度学习算法的基本原理和实践技巧,包括深度学习的基本原理、Theano和TensorFlow工具的介绍与应用、深度学习在图像处理和自然语言处理中的应用等方面。通过对本书的学习,读者可以系统地学习深度学习算法,并掌握在计算机领域应用深度学习的能力。
本文由nayona.cn整理
本文采摘于网络,不代表本站立场,转载联系作者并注明出处: https://sm.nayona.cn/xinnengyuan/259527.html